3.286 \(\int \frac{x^3}{\sqrt{3 x^2-4 x^4}} \, dx\)

Optimal. Leaf size=34 \[ -\frac{1}{8} \sqrt{3 x^2-4 x^4}-\frac{3}{32} \sin ^{-1}\left (1-\frac{8 x^2}{3}\right ) \]

[Out]

-Sqrt[3*x^2 - 4*x^4]/8 - (3*ArcSin[1 - (8*x^2)/3])/32

________________________________________________________________________________________

Rubi [A]  time = 0.0582664, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {2018, 640, 619, 216} \[ -\frac{1}{8} \sqrt{3 x^2-4 x^4}-\frac{3}{32} \sin ^{-1}\left (1-\frac{8 x^2}{3}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^3/Sqrt[3*x^2 - 4*x^4],x]

[Out]

-Sqrt[3*x^2 - 4*x^4]/8 - (3*ArcSin[1 - (8*x^2)/3])/32

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{3 x^2-4 x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{\sqrt{3 x-4 x^2}} \, dx,x,x^2\right )\\ &=-\frac{1}{8} \sqrt{3 x^2-4 x^4}+\frac{3}{16} \operatorname{Subst}\left (\int \frac{1}{\sqrt{3 x-4 x^2}} \, dx,x,x^2\right )\\ &=-\frac{1}{8} \sqrt{3 x^2-4 x^4}-\frac{1}{32} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{9}}} \, dx,x,3-8 x^2\right )\\ &=-\frac{1}{8} \sqrt{3 x^2-4 x^4}-\frac{3}{32} \sin ^{-1}\left (1-\frac{8 x^2}{3}\right )\\ \end{align*}

Mathematica [A]  time = 0.0188481, size = 57, normalized size = 1.68 \[ \frac{x \left (8 x^3+3 \sqrt{4 x^2-3} \tanh ^{-1}\left (\frac{2 x}{\sqrt{4 x^2-3}}\right )-6 x\right )}{16 \sqrt{3 x^2-4 x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/Sqrt[3*x^2 - 4*x^4],x]

[Out]

(x*(-6*x + 8*x^3 + 3*Sqrt[-3 + 4*x^2]*ArcTanh[(2*x)/Sqrt[-3 + 4*x^2]]))/(16*Sqrt[3*x^2 - 4*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 48, normalized size = 1.4 \begin{align*}{\frac{x}{16}\sqrt{-4\,{x}^{2}+3} \left ( -2\,x\sqrt{-4\,{x}^{2}+3}+3\,\arcsin \left ( 2/3\,x\sqrt{3} \right ) \right ){\frac{1}{\sqrt{-4\,{x}^{4}+3\,{x}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(-4*x^4+3*x^2)^(1/2),x)

[Out]

1/16*x*(-4*x^2+3)^(1/2)*(-2*x*(-4*x^2+3)^(1/2)+3*arcsin(2/3*x*3^(1/2)))/(-4*x^4+3*x^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.44845, size = 35, normalized size = 1.03 \begin{align*} -\frac{1}{8} \, \sqrt{-4 \, x^{4} + 3 \, x^{2}} - \frac{3}{32} \, \arcsin \left (-\frac{8}{3} \, x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(-4*x^4+3*x^2)^(1/2),x, algorithm="maxima")

[Out]

-1/8*sqrt(-4*x^4 + 3*x^2) - 3/32*arcsin(-8/3*x^2 + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.25666, size = 96, normalized size = 2.82 \begin{align*} -\frac{1}{8} \, \sqrt{-4 \, x^{4} + 3 \, x^{2}} - \frac{3}{16} \, \arctan \left (\frac{\sqrt{-4 \, x^{4} + 3 \, x^{2}}}{2 \, x^{2}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(-4*x^4+3*x^2)^(1/2),x, algorithm="fricas")

[Out]

-1/8*sqrt(-4*x^4 + 3*x^2) - 3/16*arctan(1/2*sqrt(-4*x^4 + 3*x^2)/x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{- x^{2} \left (4 x^{2} - 3\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(-4*x**4+3*x**2)**(1/2),x)

[Out]

Integral(x**3/sqrt(-x**2*(4*x**2 - 3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.15154, size = 35, normalized size = 1.03 \begin{align*} -\frac{1}{8} \, \sqrt{-4 \, x^{4} + 3 \, x^{2}} + \frac{3}{32} \, \arcsin \left (\frac{8}{3} \, x^{2} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(-4*x^4+3*x^2)^(1/2),x, algorithm="giac")

[Out]

-1/8*sqrt(-4*x^4 + 3*x^2) + 3/32*arcsin(8/3*x^2 - 1)